Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies

نویسندگان

  • Dinesh Manandhar
  • Lingyun Song
  • Ami Kabadi
  • Jennifer B. Kwon
  • Lee E. Edsall
  • Melanie Ehrlich
  • Koji Tsumagari
  • Charles A. Gersbach
  • Gregory E. Crawford
  • Raluca Gordân
چکیده

Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation.

MicroRNAs play important roles in many cell processes, including the differentiation process in several different lineages. For example, microRNAs can promote differentiation by repressing negative regulators of transcriptional activity. These regulated transcription factors can further up-regulate levels of the microRNA in a feed-forward mechanism. Here we show that MyoD up-regulates miR-378 d...

متن کامل

Effects of myogenin on expression of late muscle genes through MyoD-dependent chromatin remodeling ability of myogenin.

MyoD and myogenin (Myog) recognize sets of distinct but overlapping target genes and play different roles in skeletal muscle differentiation. MyoD is sufficient for near-full expression of early targets, while Myog can only partially enhance expression of MyoD-initiated late muscle genes. However, the way in which Myog enhances the expression of MyoD-initiated late muscle genes remains unclear....

متن کامل

MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex.

The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we perform...

متن کامل

P-19: Association of Poor Chromatin Remodeling with Cytosolic ROS and Mitochondrial ROS in Sperm of Infertile Men

Background: Cytoplasm and mitochondria are considered as the major origins of sperm ROS production. Sperm is prone to DNA damage by exposure to ROS or due impaired chromatin remodeling or low DNA protamination. Therefore, the aim of this study was to see if there is any association between impaired chromatin packaging and origin of ROS production. Materials and Methods: Cytosolic ROS, mitochond...

متن کامل

The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling.

Skeletal muscle differentiation requires the coordinated activity of transcription factors, histone modifying enzymes, and ATP-dependent chromatin remodeling enzymes. The type II protein arginine methyltransferase Prmt5 symmetrically dimethylates histones H3 and H4 and numerous nonchromatin proteins, and prior work has implicated Prmt5 in transcriptional repression. Here we demonstrate that Myo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017